Reduction Formula illustrated

Breaking integral into Reduction Formulae2

Reduction formulae is a method of integration commonly used in solving integrals that are raised to power n. It is common in trigonometric ratios that are raised to power n.

Reduction formula is obtained using implicit integration. implicit integration is the use of substitution to find the integral of y with respect to x. This method only works if the derivative of the substituted function is already in the integral. It is basically use of chain rule(PhysicsForums.com)

Ilustrating inplicit method for reduction formulae

Example of the Reduction Formulae problem

Using the implicit integration, obtain the reduction formulae for:

$$I_n = \int cos^nxdx \ hence \ evaluate \ \int cos^5dx$$

solution

$$I_n = \int cos^nxdx =\int cos^{n-1}cosxdx$$

taking the part with the highest power;

we let u = cosn-1x and dv= cosxdx

$$\frac{du}{dx} = (n-1)(-sinx)cos^{n-2}$$

hence

$${du} = (n-1)(-sinx)cos^{n-2}{dx}$$
$$\int dv = \int cosxdx= sinx$$

hence v =sinx and then substituting in the integral:

$$I_n = sinxcos^{n-1}x +(n-1)\int sin^2x cos^{n-2}xdx$$

From the trigonometric identities:

$$sin^x = 1-cos^2x$$

hence we have :

$$I_n = sinxcos^{n-1}x +(n-1)\int (1-cos^2x) cos^{n-2}xdx$$

expanding the integral:

$$I_n = sinxcos^{n-1}x +(n-1)[\int cos^{n-2}xdx-cos^nxdx]$$
$$ = sinxcos^{n-1}x +(n-1)\int cos^{n-2}xdx-(n-1)\int cos^nxdx$$

but In = cosnxdx . hence

$$I_n =sinxcos^{n-1}x+(n-1)I_{n-2} -(n-1)I_n$$

$$I_n +(n-1)I_n=sinxcos^{n-1}x+(n-1)I_{n-2} $$
$$I_n +nIn_n-I_n=sinxcos^{n-1}x+(n-1)I_{n-2} $$
$$nIn=sinxcos^{n-1}x+(n-1)I_{n-2} $$
$$I_n = \frac{sinxcos^{n-1}}{n} +\frac{(n-1)I_{n-2}}{n} \ for \ n \geq 2 $$

when n = 5, our original equation becomes:

$$I_5 = \int cos^5xdx =\frac{sinxcos^4x}{5} + \frac{4}{5}I_3$$

but

$$I_3 = \frac{sinxcos^2x}{3} +\frac{2}{3}I_1 $$

whereas

$$I_1 = \int cosxdx = sinx +C $$

therefore

$$I_5 = \int cos^5xdx =\frac{sinxcos^4x}{5} + \frac{4}{5}(\frac{sinxcos^2x}{3}+\frac{2}{3}I_1)$$

$$I_5 = \int cos^5xdx =\frac{sinxcos^4x}{5} + \frac{4}{5}(\frac{sinxcos^2x}{3}+\frac{2}{3}sinx) +C$$
$$I_5 = \int cos^5xdx = \frac{sinxcos^4x}{5} + \frac{4sinxcos^2x}{15} + \frac{8sinx}{15} +c $$

Practice problem

obtain the reduction formula for

$$I_n = \int sin^nxdx$$

hence solve

$$ \int sin^4xdx$$

Expected Answers

$$I_n = \frac{-cosxsin^{n-1}x}{n} + \frac{(n-1)}{n} I_{n-2}, \ \ \ n \ \ \geq 2 $$
$$\int sin^4x = \frac{-cosxsin^3x}{4} – \frac{3}{8}cosxsinx + \frac{3}{8} +c $$

Please note:

$$I_o = \int 1 dx = x+c $$

Example 2 on Reduction formulae

obtain the reduction formula for the following integral:

$$I_n=\int tan^nxdx$$

solution

tannx can be written in terms of (tan(n-2)x)(tan2x), hence:

$$\int tan^ndx = \int tan^{n-2}x(tan^2x)dx$$

but tan2x = sec2x-1, hence:

$$\int tan^ndx = \int tan^{n-2}x(sec^2x-1)dx$$
$$ = \int (tan^{n-2}xsec^2x – tan^{n-2})dx $$

Therefore

$$I_n = \int (tan^{n-2}xsec^x – \int tan^{n-2})dx $$
$$I_n = \int tan^{n-2}xsec^2xdx – I_{n-2} ———-(i)$$

Considering the integral:

$$\int tan^{n-2}xsec^2xdx$$

u = tann-2x and dv = sec2xdx

$$du = (n-2)sec^2xtan^{n-3}xdx $$
$$v = tanx$$

applying integration by parts:

$$tan^{n-2}sec^2xdx = tan^{n-1}x-(n-2)\int sec^2xtan^{n-2}xdx $$

but sec2x=1+tan2x, hence

$$tan^{n-2}sec^2xdx = tan^{n-1}x-(n-2)\int (1+tan^2x)tan^{n-2}xdx $$
$$ = tan^{n-1}x-(n-2)\int tan^2xdx -(n-2)\int tan^nx dx $$

therefore

$$\int tan^ndx = tan^{n-1}x – (n-2)I_{n-2} – (n-2)I_n $$

substituting:

$$I_n \ for \int tan^nx$$
$$I_n = tan^{n-1}x -(n-2)I_{n-2}-(n-2)I_n – I_{n-2}$$
$$I_n+(n-2)I_{n-2} = tan^{n-1}x – (n-1)I_{n-2} $$
$$(n-1)I_n= tan^{n-1}x – (n-1)I_{n-2} $$

In therefore becomes:

$$I_n=\frac{tan^{n-1}x}{n-1} – I_{n-2} , n \geq 2 $$

practice Question 2

obtain a reduction formulae for :

$$I_n =\int cot^nxdx$$

Hints:

$$I_n = \int cot^nxdx = I_n =- \frac{cot^{n-1}x}{n-1} – I_{n-2} \ , n \geq 2$$
$$\int tanxdx =-ln|cosx| \ or \ ln|secx| $$
$$\int cosecx =tan\frac{1}{2}x = -ln|cosex+cotx| $$

Example 3 : Reduction Formulae

Obtain the reduction formulae for:

$$I_n = \int sec^nxdx = \int sec^{n-2}xsec^2xdx$$

solution

Let u =secn-2x

du = (n-2)secxtanxsecn-3xdx

dv = sec2x

v=tanx

$$I_n = tanxsec^{n-2}x – (n-2)\int tan^2xsec^{n-2}xdx$$
$$=tanxsec^{n-2}x-(n-2)\int tan^2xdx+(n-2)\int sec^{n-2}xdx$$
$$$$
$$I_n = tanxec^{n-2}x-(n-2)I_n +(n-2)I_{n-2}$$
$$(n-1)I_n = tanxsec^{n-2}x+(n-2)I_{n-2}$$
$$I_n = \frac{tanxsec^{n-2}x}{n-1} + \frac{(n-2)}{(n-1)}I_{n-2} $$

practice Question

Obtain a reduction formula in:

$$I_n = \int cosec^nxdx$$

ANSWER

$$I_n = \frac{-cotxcosec^{n-2}x}{n-1}+\frac{n-2}{n-1}I_{n-2}, \ n \geq 2$$

Reduction formula for the integral of the form Imn

The reduction formula for integrals of the form

$$I_mn = \int x^m(1-x^2)^n$$

is typically used to simplify integrals involving powers of x and terms like (1−x2)n. These integrals often appear in the context of trigonometric integrals or in solving problems related to orthogonal polynomials like Legendre polynomials.

A standard reduction formula for this type of integral is:

$$I_{mn} = \int x^m(1-x^2)^ndx$$

The general form of the reduction formula for Imn​ is derived by applying integration by parts, or by using properties of Beta and Gamma functions, or by recursively reducing the degree of the polynomial. Here’s an example of a reduction formula:

$$I_{mn}= \int x^m(1-x^2)^ndx$$

This formula essentially relates the integral Im,n​ to simpler integrals by reducing the powers of xxx. The specific formula can vary depending on the values of mmm and n, and also the boundaries of the integral (whether it’s definite or indefinite).

Example 4 on Reduction Formulae

Obtain the reduction formulae for

$$Obtain \ the \ reduction \ formulae \ for \ I_n = \int x^ncosxdx $$

let u = xn

dv = cosxdx

du = nxn-1dx

v = sinx

$$I_n = x^nsinx -n\int x^{n-1}sinxdx ———–(i)$$

but

$$\int x^{n-1}sinxdx$$

u = xn-1 and dv = sinxdx

du = (n-1)xn-2dx

v = cosx

$$\int x^{n-1}sinxdx = -x^{n-1} cosx + (n-1) \int x^{n-2}cosxdx $$
$$-x^{n-2}cosx + (n-1)I_{n-2} ———- (ii)$$
$$I_n = x^n sinx + nx^{n-1}cosx – n(n-1)I_{n-2} , n \geq 2$$

Example Problem

show that:

$$I_{m,n} = \int sin^mxcos^nxdx = \frac{-1}{m+n}sin^{m-1}xcos^{n+1} + (\frac{m-1}{m+n}I_{m-2}) \ for \ m,n \ge \ 2$$

solution

$$I_{m,n} = \int sin^mxcos^nxdx = \int sin^{m-1}x(cosxcos^nx)$$

let u = sinm-1x

dv = sinxcosnxdx

du = (m-1)cosxsinm-2dx

$$V = \frac{-1}{n+1}cos^{n+1}dx $$
$$I_{mn} = \frac{-1}{n+1}sin^{m-1}xcos^{n+1}x+\frac{m-1}{n+1} \int cos^{n+2}xcos^{m-2}dx$$
$$=\frac{-1}{n+1}sin^{m-1}xcos^{n+1}x+\frac{m-1}{n+1} \int sin^{m-2}xcos^nxcos^2xdx$$
$$=\frac{-1}{n+1}sin^{m-1}xcos^{n+1}x + \frac{m-1}{n+1}\int sim^{m-2}xcos^nx(1-sin^2x)dx$$
$$=\frac{-1}{n+1}sin^{m-1}xcos^{n+1}x+\frac{m-1}{n+1}\int sin^{m-2}xcos^nxdx – \frac{m-1}{n+1}\int sim^mxcos^nxdx$$
$$I_{mn} = -\frac{1}{n+1}sin^{m-1}xcos^{n+1}x+\frac{m-1}{n+1}I_{m-2}, n-\frac{m-1}{n+1}I_{mn}$$
$$I_{m,n}+\frac{m-1}{n+1}I_{mn} = \frac {-1}{n+1}sin^{m-1}xcos^{n+1}x + \frac{m-1}{n+1}I_{m-2},2$$
$$\frac{m+n}{n+1}I_{m,n} = \frac{-1}{n+1}sin^{m-1}xcos^{n+1}x + \frac{m-1}{n+1}I_{m-2}, n$$
$$I_{mn} = \frac{-1}{m+n}sin^{m-1}xcos^{n+1}x+\frac{m-1}{m+n}I_{m-2} \ , m \ge 2 $$

Revision Exercise

  1. Find the reduction formula for :
$$I_n = \int x^ne^xdx \ hence \ evaluate \ I_3 = \int x^3e^xdx$$

hint:

$$I_n = x^ne^x-I_{n-1} \ , n \ge1$$

2.

show that:

$$I_n= \int (lnx)^ndx = x(lnx)^n – nI_{n-1} , n \ge1$$

3. Find the reduction formulae for :

$$I_n = \int x^ne^{-x^2}dx$$

hint:

$$I_n =\frac{1}{2}x^{n-1}e^{-x^2}+(\frac{n-1}{2}I_{n-2})\ , \ n\ge2$$

4. obtain the reduction formulae for :

$$I_{m,n} = \int x^m(lnx)^ndx$$

hint:

$$I_{m.n} = \frac{x^{m+1}}{m+1}(lnx)^n – (\frac{n}{m+1})I_m \ , (n-1) $$

Practice Questions involving Integration by parts

Use Integration by parts to complete the following integrals:

1.

$$\int xe^2xdx$$

2.

$$\int tsintdt$$

3.

$$\int xcos3xdx$$

4.

$$\int x^3lnxdx$$

5.

$$\int \sqrt{y} \ lnydy$$

6.

$$\int (lnt)^2dt$$

7.

$$x^2tan^{-1}xdx$$

8.

$$\int sec^{-1}(\sqrt{x})dx$$

9.

$$\int tan^{-1} \ \sqrt{x}dx$$

Related topics



Discover more from precisestudy

Subscribe to get the latest posts sent to your email.


Comments

One response to “Breaking integral into Reduction Formulae2”

  1. […] Breaking integral into Reduction Formulae2 […]

Leave a Reply

Your email address will not be published. Required fields are marked *

Discover more from precisestudy

Subscribe now to keep reading and get access to the full archive.

Continue reading