showing substitution for x by integration

Integration by substitution

illustrating integration by substitution by replacing u for x-1

In Calculus, Integration by substitution is when we replace an integral value or its parts in an attempt to make the expression easier to integrate.

Consider the function f(u) such that u is a function of x.

let u = f(x) and f(u)=u

$$ \frac{\mathrm{d} }{\mathrm{d} x}f(u) = \frac{\mathrm{du} }{\mathrm{d} x}f'(u)$$

where:

$$f'(u) = \frac{\mathrm{d} f(u)}{\mathrm{d} u}$$

Integrating….;

$$\int \frac{\mathrm{d} u}{\mathrm{d} x}f'(u)dx = \int \frac{\mathrm{d} } {\mathrm{d} x} f(u)dx = f(u) + C$$

but:

$$f'(u) = {\frac{\mathrm{d}f(u) }{\mathrm{d} u}}{}$$

so that

$$\int f'(u)du = f(u) + c$$
$$\int \frac{\mathrm{d} u}{\mathrm{d} x}f'(u)dx = \int f'(u)du = f(u) + C$$
Example 1

Solve the problem below using Integration by substitution:

$$\int x^{2}\sqrt{x{^{3}+5}}$$

solution

substitute the expression under the root sign as shown:

let

$$ u ={x{^{3}+5}}$$

then integrating u with respect to x we get:

$$\frac{\mathrm{d} u}{\mathrm{d} x} = 3x^{2}$$

and so:

$$du = 3x^{2}dx$$

and making dx the subject:

$$dx = \frac{\mathrm{d} u}{\mathrm{3} x^{^{2}}}$$

rewriting the expression:

$$$$
$$\int x^{2}\sqrt{x{^{3}+5}} = \int x^{2}\sqrt{u} \frac{\mathrm{du} }{\mathrm{3} x^{2}} $$

x2 on the numerator can then be cancelled out by the x2 on the denominator.

The expression becomes:

$$\int \frac{\sqrt{U}{du} }{\mathrm{3} x^{^{2}}} = \int \frac{\mathrm{u} ^{\frac{\mathrm{1} }{\mathrm{2} }}}{\mathrm{3} } du$$

=

$$ = \frac{1}{3}\int U^{^{^{\frac{1} { 2}}}} du$$

$$\frac{1}{3}. \frac{U^{\frac{3}{2}}}{\frac{3}{2}} + C = \frac{2U^{\frac{3}{2}}}{9} + C$$
$$\frac{1}{3}. \frac{U^{\frac{3}{2}}}{\frac{3}{2}} + C = \frac{2U^{\frac{3}{2}}}{9} + C =\frac{2}{9}(x^{3}+5)^\frac{3}{2} +C$$

Example 2

solve :

$$\int 2x\sqrt{1+x^{2}} dx$$

solution

let u = 1 +x2

then differentiating u with respect to x

$$\frac{du}{dx} =2u$$

and then rearranging:

$$dx= \frac{du}{2x}$$

then rewriting the integral:

$$\int 2x \sqrt{u} \frac{du}{2x} = \int \sqrt{u} du$$

2x on the denominator has cancelled the 2x on the numerator so that we only have u that is easy to integrate:

$$\int \sqrt{u} du = \int u^{\frac {-1}{2}} du = \left[ \frac{u^{\frac{3}{2}}}{\frac{3}{2}} +C \right]$$
$$=\frac{2u^{\frac{3}{2}}}{3} + C = \frac{2(1+x{^{2}})^{\frac{3}{2}}}{3} + C$$

Example

solve by substitution:

$$\int \frac{1}{\sqrt{2x+1}} dx$$

solution

let u = 2x + 1

differentiating u with respect to x we obtain;

$$\frac{du}{dx} = 2$$

now we express dx in terms of u as:

$$du = \frac{dx}{2}$$

Then we need to rewrite our integral as:

$$\int \frac{1}{u^{\frac{1}{2}}} \frac{du}{2} = \frac{1}{2} \int u{^{\frac{-1}{2}}}du$$

then:

$$ \int u{^{\frac{-1}{2}}}du =\frac{1}{2} [\frac{u^{\frac{1}{2}}}{\frac{1}{2}}] + C $$
$$=U^{\frac{1}{2}} + C$$

rem U = 2x + 1

and any number raised to power of 1/2 is like finding it’s squareroot

hence:

$$ U^{\frac{1}{2}} + C = \sqrt{2x + 1} + C$$

substitution Problem involving trigonometric ratios

solve:

$$ \int cosxsin^3x dx$$

solution:

let u = sin x: then

$$\frac{du}{dx} = cos x $$
$$dx = \frac{du}{cosx}$$

and applying substitution in our integral, we replace dx;

$$\int cosxsin^3x dx = \int cosx . u^3\frac{du}{cosx}$$

cos x in the numerator cancels the one at the denominator that the expression is reduced to:

$$\int u^3du$$
$$\int u^3du =\frac{U^4}{4} + C$$

but u = sin x; therefore:

$$\frac{U^4}{4} + C = \frac{sin^4x}{4} + C$$

generally:

$$\int cosxsin^xx dx = \frac{1}{n+1} sin^{n+1} +C$$

Example on trigonometric substitution

solve:

$$\int sinxcos^5xdx$$

let u = cos x

$$du = -sin x dx$$
$$\frac{du}{-sinx} = dx$$

rewriting dx in our original integral:

$$\int sinxcos^5xdx = \int sinxcos^5x\frac{du}{-sinx}$$

we eliminate sin x in the integral to obtain the following expression:

$$=\int -cos^5xdu$$

but cos x = u

hence cos5x = u5 and so the integral becomes:

$$- \int u^5du$$

hence we get:

$$- \int u^5du = -\frac{u^6}{6} + 6$$

and then replacing u for cos x we get:

$$- \frac{cos^6 x}{6}+C$$

in general:

$$\int sinxcos^nxdx = \frac{-1}{n+1}cos^{n+1} x+ C$$

Integration by substitution: natural log by substitution

solve:

$$\int \frac{ln x}{x}dx$$

let u = lnx

$$\frac{du}{dx} = \frac{1}{x}$$

x du = dx

hence we write the integral as:

$$\int \frac{ln x}{x}dx = \int \frac{lnx}{x}x du$$

and so we eliminate x to have the integral:

$$\int lnxdu = \int udu$$
$$ \int udu = \frac{u^2}{2} + C = \frac{(lnx)^2}{2} + C $$

Example on sec trigonometric ration

solve:

$$\int sec^2(3x-1)dx$$

let u = 3x-1

$$\frac{du}{dx} =3 $$

du = 3dx

$$dx = \frac{du}{3}$$
$$\int sec^2u \frac{du}{3} = \frac{1}{3} \int sec^2udu = \frac{1}{3}tan u + c = \frac{1}{3}tan(3x-1)+C$$

Example 3 on trigonometric ratio

integrate:

$$\int sin xe^{cosx} dx $$

let u = cos x

$$du = -sinxdx$$
$$dx = \frac{du}{-sinx}$$
$$= \int sinx e^u \frac{du}{-sinx} = -\int e^udu = -e^u+c$$

Practice exercise

use the substitution method to evaluate the following integrals:

1. $$\int x (x^2-3)^4dx$$
2. $$\int x \sqrt{1-x^2} dx $$
3. $$\int cos 2x(sin(2x+3))^2 dx$$
4. $$\int e^x \sqrt{1+e^x} dx$$
5. $$\int sec^2xtan^2xdx$$
6. $$\int \sqrt{x}\sqrt{1+x^{\frac{3}{2}}}dx$$
7. $$\int(x+1)sin(x^2+2x+2)dx$$
8. $$\int (x+1)\sqrt{x^2+2x+3}dx$$
9. $$\int \frac{x^2}{(x^3+8)^4}dx$$

Related Topics


Discover more from precisestudy

Subscribe to get the latest posts sent to your email.


Comments

Leave a Reply

Your email address will not be published. Required fields are marked *

Discover more from precisestudy

Subscribe now to keep reading and get access to the full archive.

Continue reading